Circulating iron levels influence the regulation of hepcidin following stimulated erythropoiesis
EHA Learning Center. Mirciov C. Oct 1, 2018; 234240
Topic: 5Cc Laboratory work-up on iron metabolism and vitamin deficiencies
Cornel S.G. Mirciov
Cornel S.G. Mirciov
Login now to access Regular content available to all registered users.

Access to EHA Members only content is an EHA membership benefit.
Click here to join EHA or renew your membership here.

Journal Abstract
Discussion Forum (0)
Rate & Comment (0)

Co-Authors: Sarah J. Wilkins, Grace C. C. Hung, Sheridan L. Helman, Gregory J. Anderson, David M. Frazer

Abstract: The stimulation of erythrocyte formation increases the demand for iron by the bone marrow and this in turn may affect the levels of circulating diferric transferrin. As this molecule influences the production of the iron regulatory hormone hepcidin, we hypothesized that erythropoiesis-driven changes in diferric transferrin levels could contribute to the decrease in hepcidin observed following the administration of erythropoietin. To examine this, we treated mice with erythropoietin and examined diferric transferrin at various time points up to 18 hours. We also investigated the effect of altering diferric transferrin levels on erythropoietin-induced inhibition of Hamp1, the gene encoding hepcidin. We detected a decrease in diferric transferrin levels 5 hours after erythropoietin injection and prior to any inhibition of the hepatic Hamp1 message. Diferric transferrin returned to control levels 12 hours after erythropoietin injection and had increased beyond control levels by 18 hours. Increasing diferric transferrin levels via intravenous iron injection prevented the inhibition of Hamp1 expression by erythropoietin without altering hepatic iron concentration or the expression of Erfe, the gene encoding erythroferrone. These results suggest that diferric transferrin likely contributes to the inhibition of hepcidin production in the period shortly after injection of erythropoietin and that, under the conditions examined, increasing diferric transferrin levels can overcome the inhibitory effect of erythroferrone on hepcidin production. They also imply that the decrease in Hamp1 expression in response to an erythropoietic stimulus is likely to be mediated by multiple signals.

Article Number: 1616

Doi: 10.3324/haematol.2017.187245

Code of conduct/disclaimer available in General Terms & Conditions
Anonymous User Privacy Preferences

Strictly Necessary Cookies (Always Active)

MULTILEARNING platforms and tools hereinafter referred as “MLG SOFTWARE” are provided to you as pure educational platforms/services requiring cookies to operate. In the case of the MLG SOFTWARE, cookies are essential for the Platform to function properly for the provision of education. If these cookies are disabled, a large subset of the functionality provided by the Platform will either be unavailable or cease to work as expected. The MLG SOFTWARE do not capture non-essential activities such as menu items and listings you click on or pages viewed.

Performance Cookies

Performance cookies are used to analyse how visitors use a website in order to provide a better user experience.

Google Analytics is used for user behavior tracking/reporting. Google Analytics works in parallel and independently from MLG’s features. Google Analytics relies on cookies and these cookies can be used by Google to track users across different platforms/services.

Save Settings