Proteomic analysis of plasma from children with sickle cell anemia and silent cerebral infarction
EHA Learning Center. Tewari S. Jul 1, 2018; 224105
Topic: 1A Red cell and iron disorders
Sanjay Tewari
Sanjay Tewari
Login now to access Regular content available to all registered users.

Access to EHA Members only content is an EHA membership benefit.
Click here to join EHA or renew your membership here.


Journal Abstract
Discussion Forum (0)
Rate & Comment (0)

Co-Authors: George Renney, John Brewin, Kate Gardner, Fenella Kirkham, Baba Inusa, James E Barrett, Stephan Menzel, Swee Lay Thein, Malcolm Ward, David C. Rees

Abstract: Silent cerebral infarction is the most common neurological abnormality in children with sickle cell anemia, affecting 30-40% of 14 year olds. There are no known biomarkers to identify children with silent cerebral infarcts, and the pathological basis is also unknown. We used an unbiased proteomic discovery approach to identify plasma proteins differing in concentration between children with and without silent cerebral infarcts. Clinical parameters and plasma samples were analysed from 51 children (mean age 11.8 years, range 6-18) with sickle cell anemia (HbSS). A total of 19 children had silent cerebral infarcts and 32 normal MRI; the children with silent infarcts had lower HbF levels (8.6 vs. 16.1%, P=0.049) and higher systolic blood pressures (115 vs. 108.6, P=0.027). Plasma proteomic analysis showed 13 proteins increased more than 1.3 fold in the SCI patients, including proteins involved in hypercoagulability (α2-antiplasmin, fibrinogen−γ chain, thrombospondin-4), inflammation (α2-macroglobulin, complement C1s and C3), and atherosclerosis (apolipoprotein B-100). Higher levels of gelsolin and retinol-binding protein 4 were also found in the population with silent infarcts, both of which have been linked to stroke. We investigated the genetic basis of these differences by studying 359 adults with sickle cell disease (199 with silent cerebral infarcts, 160 normal MRIs), who had previously undergone a genome-wide genotyping array. None of the genes coding for the differentially expressed proteins were significantly associated with silent infarction. Our study suggests that silent cerebral infarcts in sickle cell anemia may be associated with higher systolic blood pressure, lower HbF levels, hypercoagulability, inflammation and atherosclerotic lipoproteins.

Article Number: 1136

Doi: 10.3324/haematol.2018.187815

Code of conduct/disclaimer available in General Terms & Conditions
Anonymous User Privacy Preferences

Strictly Necessary Cookies (Always Active)

MULTILEARNING platforms and tools hereinafter referred as “MLG SOFTWARE” are provided to you as pure educational platforms/services requiring cookies to operate. In the case of the MLG SOFTWARE, cookies are essential for the Platform to function properly for the provision of education. If these cookies are disabled, a large subset of the functionality provided by the Platform will either be unavailable or cease to work as expected. The MLG SOFTWARE do not capture non-essential activities such as menu items and listings you click on or pages viewed.


Performance Cookies

Performance cookies are used to analyse how visitors use a website in order to provide a better user experience.



Google Analytics is used for user behavior tracking/reporting. Google Analytics works in parallel and independently from MLG’s features. Google Analytics relies on cookies and these cookies can be used by Google to track users across different platforms/services.


Save Settings