Molecular analysis of myelodysplastic syndrome with isolated deletion of the long arm of chromosome 5 reveals a specific spectrum of molecular mutations with prognostic impact: a study on 123 patients and 27 genes
EHA Learning Center. Meggendorfer M. Sep 1, 2017; 196250
Topic: 2Bb AML with MDS related changes
Manja Meggendorfer
Manja Meggendorfer
Login now to access Regular content available to all registered users.

Access to EHA Members only content is an EHA membership benefit.
Click here to join EHA or renew your membership here.

Journal Abstract
Discussion Forum (0)
Rate & Comment (0)

Co-Authors: Claudia Haferlach, Wolfgang Kern, Torsten Haferlach

Abstract: The only cytogenetic aberration defining a myelodysplastic syndrome subtype is the deletion of the long arm of chromosome 5, which, along with morphological features, leads to the diagnosis of myelodysplastic syndrome with isolated deletion of the long arm of chromosome 5. These patients show a good prognosis and respond to treatment such as lenalidomide, but some cases progress to acute myeloid leukemia; however, the molecular mutation pattern is rarely characterized. Therefore, we investigated a large cohort of 123 myelodysplastic syndrome patients with isolated deletion of the long arm of chromosome 5, diagnosed following the World Health Organization classifications 2008 and 2016, by sequencing 27 genes. A great proportion of patients showed no or only one mutation. Only seven genes showed mutation frequencies >5% (SF3B1, DNMT3A, TP53, TET2, CSNK1A1, ASXL1, JAK2). However, the pattern of recurrently mutated genes was comparable to other myelodysplastic syndrome subtypes by comparison to a reference cohort, except that of TP53 which was significantly more often mutated in myelodysplastic syndrome with isolated deletion of the long arm of chromosome 5. As expected, SF3B1 was frequently mutated and correlated with ring sider-oblasts, while JAK2 mutations correlated with elevated platelet counts. Surprisingly, SF3B1 mutations led to significantly worse prognosis within cases with isolated deletion of the long arm of chromosome 5, but showed a comparable outcome to other myelodysplastic syndrome subtypes with SF3B1 mutation. However, addressing genetic stability in follow-up cases might suggest different genetic mechanisms for progression to secondary acute myeloid leukemia compared to overall myelodysplastic syndrome patients.

Article Number: 1502

Doi: 10.3324/haematol.2017.166173

Code of conduct/disclaimer available in General Terms & Conditions
Anonymous User Privacy Preferences

Strictly Necessary Cookies (Always Active)

MULTILEARNING platforms and tools hereinafter referred as “MLG SOFTWARE” are provided to you as pure educational platforms/services requiring cookies to operate. In the case of the MLG SOFTWARE, cookies are essential for the Platform to function properly for the provision of education. If these cookies are disabled, a large subset of the functionality provided by the Platform will either be unavailable or cease to work as expected. The MLG SOFTWARE do not capture non-essential activities such as menu items and listings you click on or pages viewed.

Performance Cookies

Performance cookies are used to analyse how visitors use a website in order to provide a better user experience.

Google Analytics is used for user behavior tracking/reporting. Google Analytics works in parallel and independently from MLG’s features. Google Analytics relies on cookies and these cookies can be used by Google to track users across different platforms/services.

Save Settings