Monitoring multiple myeloma by quantification of recurrent mutations in serum
EHA Learning Center. Rustad E. Jul 1, 2017; 190352
Topic: 3Ec Plasma cell myeloma (Multiple myeloma)
Mr. Even Rustad
Mr. Even Rustad
Login now to access Regular content available to all registered users.

Access to EHA Members only content is an EHA membership benefit.
Click here to join EHA or renew your membership here.

Journal Abstract
Discussion Forum (0)
Rate & Comment (0)
Co-Authors: Eivind Coward, Emilie R Skytøen, Kristine Misund, Toril Holien, Therese Standal, Magne Børset, Vidar Beisvag, Ola Myklebost, Leonardo A Meza-Zepeda, Hong Yan Dai, Anders Sundan, Anders Waage

Abstract: Circulating tumor DNA is a promising biomarker to monitor tumor load and genome alterations. We explored the presence of circulating tumor DNA in multiple myeloma patients and its relation to disease activity during long-term follow-up. We used digital droplet polymerase chain reaction analysis to monitor recurrent mutations, mainly in mitogen activated protein kinase pathway genes NRAS, KRAS and BRAF. Mutations were identified by next-generation sequencing or polymerase chain reaction analysis of bone marrow plasma cells, and their presence analyzed in 251 archived serum samples obtained from 20 patients during a period of up to 7 years. In 17 of 18 patients, mutations identified in bone marrow during active disease were also found in a time-matched serum sample. The concentration of mutated alleles in serum correlated with the fraction in bone marrow plasma cells (r=0.507, n=34, P<0.002). There was a striking covariation between circulating mutation levels and M protein in ten out of 11 patients with sequential samples. When relapse evaluation by circulating tumor DNA and M protein could be directly compared, the circulating tumor DNA showed relapse earlier in two patients (3 and 9 months), later in one patient (4 months) and in three patients there was no difference. In three patients with transformation to aggressive disease, the concentrations of mutations in serum increased up to 400 times, an increase that was not seen for the M protein. In conclusion, circulating tumor DNA in myeloma is a multi-faceted biomarker reflecting mutated cells, total tumor mass and transformation to a more aggressive disease. Its properties are both similar and complementary to M protein.

Article Number: 1266

Doi: 10.3324/haematol.2016.160564
Code of conduct/disclaimer available in General Terms & Conditions
Anonymous User Privacy Preferences

Strictly Necessary Cookies (Always Active)

MULTILEARNING platforms and tools hereinafter referred as “MLG SOFTWARE” are provided to you as pure educational platforms/services requiring cookies to operate. In the case of the MLG SOFTWARE, cookies are essential for the Platform to function properly for the provision of education. If these cookies are disabled, a large subset of the functionality provided by the Platform will either be unavailable or cease to work as expected. The MLG SOFTWARE do not capture non-essential activities such as menu items and listings you click on or pages viewed.

Performance Cookies

Performance cookies are used to analyse how visitors use a website in order to provide a better user experience.

Google Analytics is used for user behavior tracking/reporting. Google Analytics works in parallel and independently from MLG’s features. Google Analytics relies on cookies and these cookies can be used by Google to track users across different platforms/services.

Save Settings